The Hardy Space H1 with Non-doubling Measures and Their Applications [electronic resource] /by Dachun Yang, Dongyong Yang, Guoen Hu.
by Yang, Dachun [author.]; Yang, Dongyong [author.]; Hu, Guoen [author.]; SpringerLink (Online service).
Material type:
Item type | Current location | Call number | Status | Date due | Barcode |
---|---|---|---|---|---|
MAIN LIBRARY | QA403.5-404.5 (Browse shelf) | Available |
Browsing MAIN LIBRARY Shelves Close shelf browser
QC793-793.5 Standard Model Measurements with the ATLAS Detector | QC173.96-174.52 Quantum Mechanics for Pedestrians 2: Applications and Extensions | TJ807-830 The Kuroshio Power Plant | QA403.5-404.5 The Hardy Space H1 with Non-doubling Measures and Their Applications | QA273.A1-274.9 The Dynamics of Nonlinear Reaction-Diffusion Equations with Small Lévy Noise | LC8-6691 Humor, Laughter and Human Flourishing | LC8-6691 Rabindranath Tagore |
Preliminaries -- Approximations of the Identity -- The Hardy Space H1(μ) -- The Local Atomic Hardy Space h1(μ) -- Boundedness of Operators over (RD, μ) -- Littlewood-Paley Operators and Maximal Operators Related to Approximations of the Identity -- The Hardy Space H1 (χ, υ)and Its Dual Space RBMO (χ, υ) -- Boundedness of Operators over((χ, υ) -- Bibliography -- Index -- Abstract.
The present book offers an essential but accessible introduction to the discoveries first made in the 1990s that the doubling condition is superfluous for most results for function spaces and the boundedness of operators. It shows the methods behind these discoveries, their consequences and some of their applications. It also provides detailed and comprehensive arguments, many typical and easy-to-follow examples, and interesting unsolved problems. The theory of the Hardy space is a fundamental tool for Fourier analysis, with applications for and connections to complex analysis, partial differential equations, functional analysis and geometrical analysis. It also extends to settings where the doubling condition of the underlying measures may fail.
There are no comments for this item.