Normal view MARC view ISBD view

Mathematical Models and Methods for Plasma Physics, Volume 1 [electronic resource] :Fluid Models / by Rémi Sentis.

by Sentis, Rémi [author.]; SpringerLink (Online service).
Material type: materialTypeLabelBookSeries: Modeling and Simulation in Science, Engineering and Technology: Publisher: Cham : Springer International Publishing : 2014.Description: XII, 238 p. 16 illus., 11 illus. in color. online resource.ISBN: 9783319038049.Subject(s): Mathematics | Differential equations, partial | Mathematical physics | Mathematics | Mathematical Applications in the Physical Sciences | Plasma Physics | Mathematical Methods in Physics | Partial Differential EquationsDDC classification: 519 Online resources: Click here to access online
Contents:
Chapter 1. Introduction. Some Plasma characteristic quantities -- Chapter 2. Quasi-neutrality. Magneto-hydrodynamics -- Chapter 3. Laser propagation. Coupling with ion acoustic waves -- Chapter 4. Langmuir waves and Zakharov equations -- Chapter 5. Coupling electron waves and laser waves -- Chapter 6. Models with several species -- Appendix -- Bibliography -- Index.
In: Springer eBooksSummary: This monograph is dedicated to the derivation and analysis of fluid models occurring in plasma physics. It focuses on models involving quasi-neutrality approximation, problems related to laser propagation in a plasma, and coupling plasma waves and electromagnetic waves. Applied mathematicians will find a stimulating introduction to the world of plasma physics and a few open problems that are mathematically rich. Physicists who may be overwhelmed by the abundance of models and uncertain of their underlying assumptions will find basic mathematical properties of the related systems of partial differential equations. A planned second volume will be devoted to kinetic models.                                                                                                                                                        First and foremost, this book mathematically derives certain common fluid models from more general models. Although some of these derivations may be well known to physicists, it is important to highlight the assumptions underlying the derivations and to realize that some seemingly simple approximations turn out to be more complicated than they look. Such approximations are justified using asymptotic analysis wherever possible. Furthermore, efficient simulations of multi-dimensional models require precise statements of the related systems of partial differential equations along with appropriate boundary conditions. Some mathematical properties of these systems are presented which offer hints to those using numerical methods, although numerics is not the primary focus of the book.
Tags from this library: No tags from this library for this title. Add tag(s)
Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode
MAIN LIBRARY
QC19.2-20.85 (Browse shelf) Available

Chapter 1. Introduction. Some Plasma characteristic quantities -- Chapter 2. Quasi-neutrality. Magneto-hydrodynamics -- Chapter 3. Laser propagation. Coupling with ion acoustic waves -- Chapter 4. Langmuir waves and Zakharov equations -- Chapter 5. Coupling electron waves and laser waves -- Chapter 6. Models with several species -- Appendix -- Bibliography -- Index.

This monograph is dedicated to the derivation and analysis of fluid models occurring in plasma physics. It focuses on models involving quasi-neutrality approximation, problems related to laser propagation in a plasma, and coupling plasma waves and electromagnetic waves. Applied mathematicians will find a stimulating introduction to the world of plasma physics and a few open problems that are mathematically rich. Physicists who may be overwhelmed by the abundance of models and uncertain of their underlying assumptions will find basic mathematical properties of the related systems of partial differential equations. A planned second volume will be devoted to kinetic models.                                                                                                                                                        First and foremost, this book mathematically derives certain common fluid models from more general models. Although some of these derivations may be well known to physicists, it is important to highlight the assumptions underlying the derivations and to realize that some seemingly simple approximations turn out to be more complicated than they look. Such approximations are justified using asymptotic analysis wherever possible. Furthermore, efficient simulations of multi-dimensional models require precise statements of the related systems of partial differential equations along with appropriate boundary conditions. Some mathematical properties of these systems are presented which offer hints to those using numerical methods, although numerics is not the primary focus of the book.

There are no comments for this item.

Log in to your account to post a comment.
@ Jomo Kenyatta University Of Agriculture and Technology Library

Powered by Koha