Normal view MARC view ISBD view

List Decoding of Error-Correcting Codes [electronic resource] :Winning Thesis of the 2002 ACM Doctoral Dissertation Competition / by Venkatesan Guruswami.

by Guruswami, Venkatesan [author.]; SpringerLink (Online service).
Material type: materialTypeLabelBookSeries: Lecture Notes in Computer Science: 3282Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 2005.Description: XIX, 350 p. Also available online. online resource.ISBN: 9783540301806.Subject(s): Computer science | Coding theory | Computer software | Computational complexity | Algorithms | Computer Science | Coding and Information Theory | Algorithm Analysis and Problem Complexity | Models and Principles | Discrete Mathematics in Computer Science | AlgorithmsDDC classification: 003.54 Online resources: Click here to access online
Contents:
1 Introduction -- 1 Introduction -- 2 Preliminaries and Monograph Structure -- I Combinatorial Bounds -- 3 Johnson-Type Bounds and Applications to List Decoding -- 4 Limits to List Decodability -- 5 List Decodability Vs. Rate -- II Code Constructions and Algorithms -- 6 Reed-Solomon and Algebraic-Geometric Codes -- 7 A Unified Framework for List Decoding of Algebraic Codes -- 8 List Decoding of Concatenated Codes -- 9 New, Expander-Based List Decodable Codes -- 10 List Decoding from Erasures -- III Applications -- Interlude -- III Applications -- 11 Linear-Time Codes for Unique Decoding -- 12 Sample Applications Outside Coding Theory -- 13 Concluding Remarks -- A GMD Decoding of Concatenated Codes.
In: Springer eBooksSummary: This monograph is a thoroughly revised and extended version of the author's PhD thesis, which was selected as the winning thesis of the 2002 ACM Doctoral Dissertation Competition. Venkatesan Guruswami did his PhD work at the MIT with Madhu Sudan as thesis adviser. Starting with the seminal work of Shannon and Hamming, coding theory has generated a rich theory of error-correcting codes. This theory has traditionally gone hand in hand with the algorithmic theory of decoding that tackles the problem of recovering from the transmission errors efficiently. This book presents some spectacular new results in the area of decoding algorithms for error-correcting codes. Specificially, it shows how the notion of list-decoding can be applied to recover from far more errors, for a wide variety of error-correcting codes, than achievable before The style of the exposition is crisp and the enormous amount of information on combinatorial results, polynomial time list decoding algorithms, and applications is presented in well structured form.
Tags from this library: No tags from this library for this title. Add tag(s)
Log in to add tags.
    average rating: 0.0 (0 votes)

1 Introduction -- 1 Introduction -- 2 Preliminaries and Monograph Structure -- I Combinatorial Bounds -- 3 Johnson-Type Bounds and Applications to List Decoding -- 4 Limits to List Decodability -- 5 List Decodability Vs. Rate -- II Code Constructions and Algorithms -- 6 Reed-Solomon and Algebraic-Geometric Codes -- 7 A Unified Framework for List Decoding of Algebraic Codes -- 8 List Decoding of Concatenated Codes -- 9 New, Expander-Based List Decodable Codes -- 10 List Decoding from Erasures -- III Applications -- Interlude -- III Applications -- 11 Linear-Time Codes for Unique Decoding -- 12 Sample Applications Outside Coding Theory -- 13 Concluding Remarks -- A GMD Decoding of Concatenated Codes.

This monograph is a thoroughly revised and extended version of the author's PhD thesis, which was selected as the winning thesis of the 2002 ACM Doctoral Dissertation Competition. Venkatesan Guruswami did his PhD work at the MIT with Madhu Sudan as thesis adviser. Starting with the seminal work of Shannon and Hamming, coding theory has generated a rich theory of error-correcting codes. This theory has traditionally gone hand in hand with the algorithmic theory of decoding that tackles the problem of recovering from the transmission errors efficiently. This book presents some spectacular new results in the area of decoding algorithms for error-correcting codes. Specificially, it shows how the notion of list-decoding can be applied to recover from far more errors, for a wide variety of error-correcting codes, than achievable before The style of the exposition is crisp and the enormous amount of information on combinatorial results, polynomial time list decoding algorithms, and applications is presented in well structured form.

There are no comments for this item.

Log in to your account to post a comment.
@ Jomo Kenyatta University Of Agriculture and Technology Library

Powered by Koha