Normal view MARC view ISBD view

Dissipative Solitons [electronic resource] /edited by Nail Akhmediev, Adrian Ankiewicz.

by Akhmediev, Nail [editor.]; Ankiewicz, Adrian [editor.]; SpringerLink (Online service).
Material type: materialTypeLabelBookSeries: Lecture Notes in Physics: 661Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 2005.Description: XVIII, 448 p. 220 illus. Also available online. online resource.ISBN: 9783540315285.Subject(s): Physics | Laser physics | Quantum optics | Physical optics | Physics | Laser Technology and Physics, Photonics | Quantum Optics, Quantum Electronics, Nonlinear Optics | Applied Optics, Optoelectronics, Optical Devices | Physics and Applied Physics in EngineeringOnline resources: Click here to access online
Contents:
Introduction -- Dissipative Solitons of the Swift-Hohenberg Equation -- Dissipative Magneto-Optic Solitons -- Dissipative Solitons in Semiconductor Optical Amplifiers -- Dissipative Solitons in Pattern-Forming Nonlinear Optical Systems: Cavity Solitons and Feedback Solitons -- Solitons in Laser Schemes with Saturable Absorption -- Spatial Resonator Solitons -- Dissipative Temporal Solitons -- Soliton Dynamics in Modelocked Lasers -- Temporal Multi-Soliton Complexes Generated by Passively Modelocked Lasers -- Dissipative Solitons in Reaction-Diffusion Systems -- Discrete Ginzburg-Landau Solitons -- Discrete Dissipative Solitons -- Nonlinear Schroedinger Equation with Dissipation: Two Models for Bose-Einstein Condensates -- Solitary Waves of Nonlinear Equations -- Stability Analysis of Pulses via the Evans Function: Dissipative Systems -- Bifurcations and Strongly Amplitude-Modulated Pulses of the Complex Ginzburg-Landau Equation.
In: Springer eBooksSummary: This volume is devoted to the exciting topic of dissipative solitons, i.e. pulses or spatially localised waves in systems exhibiting gain and loss. Examples are laser systems, nonlinear resonators and optical transmission lines. The physical principles and mathematical concepts are explained in a clear and concise way, suitable for students and young researchers. The similarities and differences in the notion of a soliton between dissipative systems and Hamiltonian and integrable systems are discussed, and many examples are given. The contributions are written by the world's leading experts in the field, making it a unique exposition of this emerging topic.
Tags from this library: No tags from this library for this title. Add tag(s)
Log in to add tags.
    average rating: 0.0 (0 votes)

Introduction -- Dissipative Solitons of the Swift-Hohenberg Equation -- Dissipative Magneto-Optic Solitons -- Dissipative Solitons in Semiconductor Optical Amplifiers -- Dissipative Solitons in Pattern-Forming Nonlinear Optical Systems: Cavity Solitons and Feedback Solitons -- Solitons in Laser Schemes with Saturable Absorption -- Spatial Resonator Solitons -- Dissipative Temporal Solitons -- Soliton Dynamics in Modelocked Lasers -- Temporal Multi-Soliton Complexes Generated by Passively Modelocked Lasers -- Dissipative Solitons in Reaction-Diffusion Systems -- Discrete Ginzburg-Landau Solitons -- Discrete Dissipative Solitons -- Nonlinear Schroedinger Equation with Dissipation: Two Models for Bose-Einstein Condensates -- Solitary Waves of Nonlinear Equations -- Stability Analysis of Pulses via the Evans Function: Dissipative Systems -- Bifurcations and Strongly Amplitude-Modulated Pulses of the Complex Ginzburg-Landau Equation.

This volume is devoted to the exciting topic of dissipative solitons, i.e. pulses or spatially localised waves in systems exhibiting gain and loss. Examples are laser systems, nonlinear resonators and optical transmission lines. The physical principles and mathematical concepts are explained in a clear and concise way, suitable for students and young researchers. The similarities and differences in the notion of a soliton between dissipative systems and Hamiltonian and integrable systems are discussed, and many examples are given. The contributions are written by the world's leading experts in the field, making it a unique exposition of this emerging topic.

There are no comments for this item.

Log in to your account to post a comment.
@ Jomo Kenyatta University Of Agriculture and Technology Library

Powered by Koha