Foundations and Advances in Data Mining [electronic resource] /edited by Wesley Chu, Tsau Lin.
by Chu, Wesley [editor.]; Lin, Tsau [editor.]; SpringerLink (Online service).
Material type:
Item type | Current location | Call number | Status | Date due | Barcode |
---|---|---|---|---|---|
TA640-643 (Browse shelf) | Available | ||||
Long Loan | MAIN LIBRARY | TA329-348 (Browse shelf) | Available |
Browsing MAIN LIBRARY Shelves Close shelf browser
TA329-348 Computer Recognition Systems | TA329-348 Soft Computing as Transdisciplinary Science and Technology | TA329-348 Intelligent Information Processing and Web Mining | TA329-348 Foundations and Advances in Data Mining | TA329-348 Knowledge Mining | TA329-348 Foundations of Learning Classifier Systems | TA329-348 Fuzzy Systems Engineering |
The Mathematics of Learning -- Logical Regression Analysis: From Mathematical Formulas to Linguistic Rules -- A Feature/Attribute Theory for Association Mining and Constructing the Complete Feature Set -- A New Theoretical Framework for K-means-type Clustering -- Clustering via Decision Tree Construction -- Incremental Mining on Association Rules -- Mining Association Rules from Tabular Data Guided by Maximal Frequent Itemsets -- Sequential Pattern Mining by Pattern-Growth: Principles and Extensions -- Web Page Classification -- Web Mining – Concepts, Applications, and Research Directions -- Privacy-Preserving Data Mining.
With the growing use of information technology and the recent advances in web systems, the amount of data available to users has increased exponentially. Thus, there is a critical need to understand the content of the data. As a result, data-mining has become a popular research topic in recent years for the treatment of the "data rich and information poor" syndrome. In this carefully edited volume a theoretical foundation as well as important new directions for data-mining research are presented. It brings together a set of well respected data mining theoreticians and researchers with practical data mining experiences. The presented theories will give data mining practitioners a scientific perspective in data mining and thus provide more insight into their problems, and the provided new data mining topics can be expected to stimulate further research in these important directions.
There are no comments for this item.