Normal view MARC view ISBD view

Gene Expression Programming [electronic resource] :Mathematical Modeling by an Artificial Intelligence / by Cândida Ferreira.

by Ferreira, Cândida [author.]; SpringerLink (Online service).
Material type: materialTypeLabelBookSeries: Studies in Computational Intelligence: 21Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 2006.Description: XX, 478 p. Also available online. online resource.ISBN: 9783540328490.Subject(s): Engineering | Artificial intelligence | Bioinformatics | Engineering mathematics | Engineering | Appl.Mathematics/Computational Methods of Engineering | Artificial Intelligence (incl. Robotics) | BioinformaticsDDC classification: 519 Online resources: Click here to access online
Contents:
Introduction: The Biological Perspective -- The Entities of Gene Expression Programming -- The Basic Gene Expression Algorithm -- The Basic GEA in Problem Solving -- Numerical Constants and the GEP-RNC Algorithm -- Automatically Defined Functions in Problem Solving -- Polynomial Induction and Time Series Prediction -- Parameter Optimization -- Decision Tree Induction -- Design of Neural Networks -- Combinatorial Optimization -- Evolutionary Studies.
In: Springer eBooksSummary: Cândida Ferreira thoroughly describes the basic ideas of gene expression programming (GEP) and numerous modifications to this powerful new algorithm. This monograph provides all the implementation details of GEP so that anyone with elementary programming skills will be able to implement it themselves. The book also includes a self-contained introduction to this new exciting field of computational intelligence, including several new algorithms for decision tree induction, data mining, classifier systems, function finding, polynomial induction, times series prediction, evolution of linking functions, automatically defined functions, parameter optimization, logic synthesis, combinatorial optimization, and complete neural network induction. The book also discusses some important and controversial evolutionary topics that might be refreshing to both evolutionary computer scientists and biologists. This second edition has been substantially revised and extended with five new chapters, including a new chapter describing two new algorithms for inducing decision trees with nominal and numeric/mixed attributes. Cândida Ferreira thoroughly describes the basic ideas of gene expression programming (GEP) and numerous modifications to this powerful new algorithm. This monograph provides all the implementation details of GEP so that anyone with elementary programming skills will be able to implement it themselves. The book also includes a self-contained introduction to this new exciting field of computational intelligence, including several new algorithms for decision tree induction, data mining, classifier systems, function finding, polynomial induction, times series prediction, evolution of linking functions, automatically defined functions, parameter optimization, logic synthesis, combinatorial optimization, and complete neural network induction. The book also discusses some important and controversial evolutionary topics that might be refreshing to both evolutionary computer scientists and biologists. This second edition has been substantially revised and extended with five new chapters, including a new chapter describing two new algorithms for inducing decision trees with nominal and numeric/mixed attributes.
Tags from this library: No tags from this library for this title. Add tag(s)
Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode
TA640-643 (Browse shelf) Available
Long Loan MAIN LIBRARY
TA329-348 (Browse shelf) Available

Introduction: The Biological Perspective -- The Entities of Gene Expression Programming -- The Basic Gene Expression Algorithm -- The Basic GEA in Problem Solving -- Numerical Constants and the GEP-RNC Algorithm -- Automatically Defined Functions in Problem Solving -- Polynomial Induction and Time Series Prediction -- Parameter Optimization -- Decision Tree Induction -- Design of Neural Networks -- Combinatorial Optimization -- Evolutionary Studies.

Cândida Ferreira thoroughly describes the basic ideas of gene expression programming (GEP) and numerous modifications to this powerful new algorithm. This monograph provides all the implementation details of GEP so that anyone with elementary programming skills will be able to implement it themselves. The book also includes a self-contained introduction to this new exciting field of computational intelligence, including several new algorithms for decision tree induction, data mining, classifier systems, function finding, polynomial induction, times series prediction, evolution of linking functions, automatically defined functions, parameter optimization, logic synthesis, combinatorial optimization, and complete neural network induction. The book also discusses some important and controversial evolutionary topics that might be refreshing to both evolutionary computer scientists and biologists. This second edition has been substantially revised and extended with five new chapters, including a new chapter describing two new algorithms for inducing decision trees with nominal and numeric/mixed attributes. Cândida Ferreira thoroughly describes the basic ideas of gene expression programming (GEP) and numerous modifications to this powerful new algorithm. This monograph provides all the implementation details of GEP so that anyone with elementary programming skills will be able to implement it themselves. The book also includes a self-contained introduction to this new exciting field of computational intelligence, including several new algorithms for decision tree induction, data mining, classifier systems, function finding, polynomial induction, times series prediction, evolution of linking functions, automatically defined functions, parameter optimization, logic synthesis, combinatorial optimization, and complete neural network induction. The book also discusses some important and controversial evolutionary topics that might be refreshing to both evolutionary computer scientists and biologists. This second edition has been substantially revised and extended with five new chapters, including a new chapter describing two new algorithms for inducing decision trees with nominal and numeric/mixed attributes.

There are no comments for this item.

Log in to your account to post a comment.
@ Jomo Kenyatta University Of Agriculture and Technology Library

Powered by Koha