Normal view MARC view ISBD view

High Power Laser-Matter Interaction [electronic resource] /by Peter Mulser, Dieter Bauer.

by Mulser, Peter [author.]; Bauer, Dieter [author.]; SpringerLink (Online service).
Material type: materialTypeLabelBookSeries: Springer Tracts in Modern Physics: 238Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg : 2010.Description: XII, 410p. online resource.ISBN: 9783540460657.Subject(s): Physics | Engineering | Physics | Condensed Matter Physics | Quantum Optics | Engineering, general | Optics, Optoelectronics, Plasmonics and Optical Devices | Plasma Physics | Spectroscopy and MicroscopyDDC classification: 530.41 Online resources: Click here to access online
Contents:
Introductory Remarks and Overview -- The Laser Plasma: Basic Phenomena and Laws -- Laser Light Propagation and Collisional Absorption -- Resonance Absorption -- The Ponderomotive Force and Nonresonant Effects -- Resonant Ponderomotive Effects -- Intense Laser–Atom Interaction -- Relativistic Laser–Plasma Interaction.
In: Springer eBooksSummary: This book intended as a guide for scientists and students who have just discovered the field as a new and attractive area of research, and for scientists who have worked in another field and want to join now the subject of laser plasmas. In the first chapter the plasma dynamics is described phenomenologically by a two fluid model and similarity relations from dimensional analysis. Chapter 2 is devoted to plasma optics and collisional absorption in the dielectric and ballistic model. Linear resonance absorption at the plasma frequency and its mild nonlinearities as well as the self-quenching of high amplitude electron plasma waves by wave breaking are discussed in Chapter 3. With increasing laser intensity the plasma dynamics is dominated by radiation pressure, at resonance producing all kinds of parametric instabilities and out of resonance leading to density steps, self-focusing and filamentation, described in Chapters 4 and 5. A self-contained treatment of field ionization of atoms and related phenomena are found in Chapter 6. The extension of laser interaction to the relativistic electron acceleration as well as the physics of collisionless absorption are the subject of Chapter 7. Throughout the book the main emphasis is on the various basic phenomena and on their underlying physics.
Tags from this library: No tags from this library for this title. Add tag(s)
Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode
MAIN LIBRARY
QC173.45-173.458 (Browse shelf) Available

Introductory Remarks and Overview -- The Laser Plasma: Basic Phenomena and Laws -- Laser Light Propagation and Collisional Absorption -- Resonance Absorption -- The Ponderomotive Force and Nonresonant Effects -- Resonant Ponderomotive Effects -- Intense Laser–Atom Interaction -- Relativistic Laser–Plasma Interaction.

This book intended as a guide for scientists and students who have just discovered the field as a new and attractive area of research, and for scientists who have worked in another field and want to join now the subject of laser plasmas. In the first chapter the plasma dynamics is described phenomenologically by a two fluid model and similarity relations from dimensional analysis. Chapter 2 is devoted to plasma optics and collisional absorption in the dielectric and ballistic model. Linear resonance absorption at the plasma frequency and its mild nonlinearities as well as the self-quenching of high amplitude electron plasma waves by wave breaking are discussed in Chapter 3. With increasing laser intensity the plasma dynamics is dominated by radiation pressure, at resonance producing all kinds of parametric instabilities and out of resonance leading to density steps, self-focusing and filamentation, described in Chapters 4 and 5. A self-contained treatment of field ionization of atoms and related phenomena are found in Chapter 6. The extension of laser interaction to the relativistic electron acceleration as well as the physics of collisionless absorption are the subject of Chapter 7. Throughout the book the main emphasis is on the various basic phenomena and on their underlying physics.

There are no comments for this item.

Log in to your account to post a comment.
@ Jomo Kenyatta University Of Agriculture and Technology Library

Powered by Koha