Normal view MARC view ISBD view

Rugged Free Energy Landscapes [electronic resource] :Common Computational Approaches to Spin Glasses, Structural Glasses and Biological Macromolecules / by Wolfhard Janke.

by Janke, Wolfhard [author.]; SpringerLink (Online service).
Material type: materialTypeLabelBookSeries: Lecture Notes in Physics: 736Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 2008.Description: online resource.ISBN: 9783540740292.Subject(s): Physics | Statistical physics | Crystals | Biomedical engineering | Physics | Partially Ordered Systems, Glasses, Quasicrystals | Statistical Physics | Numerical and Computational Methods | Biophysics/Biomedical PhysicsDDC classification: 530.474 Online resources: Click here to access online
Contents:
Rugged Free-Energy Landscapes – An Introduction -- Rugged Free-Energy Landscapes – An Introduction -- Spin Glasses -- Some Aspects of Infinite-Range Models of Spin Glasses: Theory and Numerical Simulations -- The Potts Glass Model: A Scenario for the Freezing Transition of Structural Glasses? -- Domain Walls, Droplets and Barriers in Two-Dimensional Ising Spin Glasses -- Local Scale-Invariance in Disordered Systems -- Structural Glasses -- Transport of Mobile Particles in an Immobile Environment: Computer Simulations of Sodium Silicates -- The Gonihedric Ising Model and Glassiness -- Protein Folding -- Thermodynamics of Protein Folding from Coarse-Grained Models’ Perspectives -- Exact Energy Landscapes of Proteins Using a Coarse-Grained Model -- Protein Folding, Unfolding and Aggregation Studied Using an All-Atom Model with~a~Simplified Interaction Potential -- All-Atom Simulations of Proteins -- Algorithmic Developments -- Markov Chain Monte Carlo Methods for Simulations of Biomolecules -- A Different Approach to Monte Carlo Simulations in Systems with Complex Free-Energy Landscapes -- Generalized-Ensemble Algorithms for Protein Folding Simulations.
In: Springer eBooksSummary: This collection of lectures and tutorial reviews by renowned experts focusses on the common computational approaches in use to unravel the static and dynamical behaviour of complex physical systems at the interface of physics, chemistry and biology. Paradigmatic examples of condensed matter physics are spin and structural glasses and protein folding, as well as their aggregation and adsorption to hard and soft surfaces, in physico-chemical biology. Among the most prominent joint key features of the systems considered in this volume are rugged free-energy landscapes. These generate metastability and are often responsible for very slow dynamics allowing for the system to be trapped in one of the many available local minima. The challenge set forth by the authors of this volume is to provide a common basis and technical language for the (computational) technology transfer between the fields and systems considered.
Tags from this library: No tags from this library for this title. Add tag(s)
Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode
MAIN LIBRARY
QC173.45-173.458 (Browse shelf) Available

Rugged Free-Energy Landscapes – An Introduction -- Rugged Free-Energy Landscapes – An Introduction -- Spin Glasses -- Some Aspects of Infinite-Range Models of Spin Glasses: Theory and Numerical Simulations -- The Potts Glass Model: A Scenario for the Freezing Transition of Structural Glasses? -- Domain Walls, Droplets and Barriers in Two-Dimensional Ising Spin Glasses -- Local Scale-Invariance in Disordered Systems -- Structural Glasses -- Transport of Mobile Particles in an Immobile Environment: Computer Simulations of Sodium Silicates -- The Gonihedric Ising Model and Glassiness -- Protein Folding -- Thermodynamics of Protein Folding from Coarse-Grained Models’ Perspectives -- Exact Energy Landscapes of Proteins Using a Coarse-Grained Model -- Protein Folding, Unfolding and Aggregation Studied Using an All-Atom Model with~a~Simplified Interaction Potential -- All-Atom Simulations of Proteins -- Algorithmic Developments -- Markov Chain Monte Carlo Methods for Simulations of Biomolecules -- A Different Approach to Monte Carlo Simulations in Systems with Complex Free-Energy Landscapes -- Generalized-Ensemble Algorithms for Protein Folding Simulations.

This collection of lectures and tutorial reviews by renowned experts focusses on the common computational approaches in use to unravel the static and dynamical behaviour of complex physical systems at the interface of physics, chemistry and biology. Paradigmatic examples of condensed matter physics are spin and structural glasses and protein folding, as well as their aggregation and adsorption to hard and soft surfaces, in physico-chemical biology. Among the most prominent joint key features of the systems considered in this volume are rugged free-energy landscapes. These generate metastability and are often responsible for very slow dynamics allowing for the system to be trapped in one of the many available local minima. The challenge set forth by the authors of this volume is to provide a common basis and technical language for the (computational) technology transfer between the fields and systems considered.

There are no comments for this item.

Log in to your account to post a comment.
@ Jomo Kenyatta University Of Agriculture and Technology Library

Powered by Koha