Normal view MARC view ISBD view

Thermal Nanosystems and Nanomaterials [electronic resource] /edited by Sebastian Volz.

by Volz, Sebastian [editor.]; SpringerLink (Online service).
Material type: materialTypeLabelBookSeries: Topics in Applied Physics: 118Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.Description: XX, 587p. 100 illus., 50 illus. in color. online resource.ISBN: 9783642042584.Subject(s): Physics | Physics | Physics, generalDDC classification: 530 Online resources: Click here to access online
Contents:
Nanomaterials -- Nanostructures -- Green's Function Methods for Phonon Transport Through Nano-Contacts -- Macroscopic Conduction Models by Volume Averaging for Two-Phase Systems -- Heat Conduction in Composites -- Optical Generation and Detection of Heat Exchanges in Metal–Dielectric Nanocomposites -- Mie Theory and the Discrete Dipole Approximation. Calculating Radiative Properties of Particulate Media, with Application to Nanostructured Materials -- Thermal Conductivity of Nanofluids -- Nanosystems -- Nanoengineered Materials for Thermoelectric Energy Conversion -- Molecular Probes for Thermometry in Microfluidic Devices -- Cell Targeting and Magnetically Induced Hyperthermia -- Accounting for Heat Transfer Problems in the Semiconductor Industry -- Advanced Thermal Measurements at Nanoscales -- Photothermal Techniques -- Thermal Microscopy with Photomultipliers and UV to IR Cameras -- Near-Field Optical Microscopy in the Infrared Range -- PhotoThermal Induced Resonance. Application to Infrared Spectromicroscopy -- Scanning Thermal Microscopy with Fluorescent Nanoprobes -- Heat Transfer in Low Temperature Micro- and Nanosystems.
In: Springer eBooksSummary: Heat transfer laws for conduction, radiation and convection change when the dimensions of the systems in question shrink. The altered behaviours can be used efficiently in energy conversion, respectively bio- and high-performance materials to control microelectronic devices. To understand and model those thermal mechanisms, specific metrologies have to be established. This book provides an overview of actual devices and materials involving micro-nanoscale heat transfer mechanisms. These are clearly explained and exemplified by a large spectrum of relevant physical models, while the most advanced nanoscale thermal metrologies are presented.
Tags from this library: No tags from this library for this title. Add tag(s)
Log in to add tags.
    average rating: 0.0 (0 votes)

Nanomaterials -- Nanostructures -- Green's Function Methods for Phonon Transport Through Nano-Contacts -- Macroscopic Conduction Models by Volume Averaging for Two-Phase Systems -- Heat Conduction in Composites -- Optical Generation and Detection of Heat Exchanges in Metal–Dielectric Nanocomposites -- Mie Theory and the Discrete Dipole Approximation. Calculating Radiative Properties of Particulate Media, with Application to Nanostructured Materials -- Thermal Conductivity of Nanofluids -- Nanosystems -- Nanoengineered Materials for Thermoelectric Energy Conversion -- Molecular Probes for Thermometry in Microfluidic Devices -- Cell Targeting and Magnetically Induced Hyperthermia -- Accounting for Heat Transfer Problems in the Semiconductor Industry -- Advanced Thermal Measurements at Nanoscales -- Photothermal Techniques -- Thermal Microscopy with Photomultipliers and UV to IR Cameras -- Near-Field Optical Microscopy in the Infrared Range -- PhotoThermal Induced Resonance. Application to Infrared Spectromicroscopy -- Scanning Thermal Microscopy with Fluorescent Nanoprobes -- Heat Transfer in Low Temperature Micro- and Nanosystems.

Heat transfer laws for conduction, radiation and convection change when the dimensions of the systems in question shrink. The altered behaviours can be used efficiently in energy conversion, respectively bio- and high-performance materials to control microelectronic devices. To understand and model those thermal mechanisms, specific metrologies have to be established. This book provides an overview of actual devices and materials involving micro-nanoscale heat transfer mechanisms. These are clearly explained and exemplified by a large spectrum of relevant physical models, while the most advanced nanoscale thermal metrologies are presented.

There are no comments for this item.

Log in to your account to post a comment.
@ Jomo Kenyatta University Of Agriculture and Technology Library

Powered by Koha