Normal view MARC view ISBD view

Partial Inner Product Spaces [electronic resource] :Theory and Applications / by Jean-Pierre Antoine, Camillo Trapani.

by Antoine, Jean-Pierre [author.]; Trapani, Camillo [author.]; SpringerLink (Online service).
Material type: materialTypeLabelBookSeries: Lecture Notes in Mathematics: 1986Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.Description: XX, 358 p. 11 illus. online resource.ISBN: 9783642051364.Subject(s): Mathematics | Functional analysis | Operator theory | Mathematics | Functional Analysis | Operator Theory | Quantum Field Theories, String Theory | Information and Communication, CircuitsDDC classification: 515.7 Online resources: Click here to access online
Contents:
General Theory: Algebraic Point of View -- General Theory: Topological Aspects -- Operators on PIP-Spaces and Indexed PIP-Spaces -- Examples of Indexed PIP-Spaces -- Refinements of PIP-Spaces -- Partial *-Algebras of Operators in a PIP-Space -- Applications in Mathematical Physics -- PIP-Spaces and Signal Processing.
In: Springer eBooksSummary: Partial Inner Product (PIP) Spaces are ubiquitous, e.g. Rigged Hilbert spaces, chains of Hilbert or Banach spaces (such as the Lebesgue spaces Lp over the real line), etc. In fact, most functional spaces used in (quantum) physics and in signal processing are of this type. The book contains a systematic analysis of PIP spaces and operators defined on them. Numerous examples are described in detail and a large bibliography is provided. Finally, the last chapters cover the many applications of PIP spaces in physics and in signal/image processing, respectively. As such, the book will be useful both for researchers in mathematics and practitioners of these disciplines.
Tags from this library: No tags from this library for this title. Add tag(s)
Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode
MAIN LIBRARY
QA319-329.9 (Browse shelf) Available

General Theory: Algebraic Point of View -- General Theory: Topological Aspects -- Operators on PIP-Spaces and Indexed PIP-Spaces -- Examples of Indexed PIP-Spaces -- Refinements of PIP-Spaces -- Partial *-Algebras of Operators in a PIP-Space -- Applications in Mathematical Physics -- PIP-Spaces and Signal Processing.

Partial Inner Product (PIP) Spaces are ubiquitous, e.g. Rigged Hilbert spaces, chains of Hilbert or Banach spaces (such as the Lebesgue spaces Lp over the real line), etc. In fact, most functional spaces used in (quantum) physics and in signal processing are of this type. The book contains a systematic analysis of PIP spaces and operators defined on them. Numerous examples are described in detail and a large bibliography is provided. Finally, the last chapters cover the many applications of PIP spaces in physics and in signal/image processing, respectively. As such, the book will be useful both for researchers in mathematics and practitioners of these disciplines.

There are no comments for this item.

Log in to your account to post a comment.
@ Jomo Kenyatta University Of Agriculture and Technology Library

Powered by Koha