Normal view MARC view ISBD view

Studies of Nanoconstrictions, Nanowires and Fe₃O₄ Thin Films [electronic resource] :Electrical Conduction and Magnetic Properties. Fabrication by Focused Electron/Ion Beam / by Amalio Fernandez-Pacheco.

by Fernandez-Pacheco, Amalio [author.]; SpringerLink (Online service).
Material type: materialTypeLabelBookSeries: Springer Theses: Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011.Description: XVI, 188 p. online resource.ISBN: 9783642158018.Subject(s): Nanotechnology | Materials Science | Nanotechnology | Nanoscale Science and Technology | Surface and Interface Science, Thin FilmsDDC classification: 620.115 Online resources: Click here to access online
Contents:
Introduction -- Experimental Techniques -- Magnetotransport Properties of Epitaxial Fe3O4 thin Films -- Conduction in in Atomic-Sized Magnetic Metallic Constructions created by FIB -- Pt-C Nanowires created by FIBID and FEBID -- Superconductor W-Based Nanowires created by FIBID -- Magnetic Cobalt Nanowires created by FEBID -- Conclusions and Outlook -- CV.
In: Springer eBooksSummary: This work constitutes a detailed study of electrical and magnetic properties in nanometric materials with a range of scales: atomic-sized nanoconstrictions, micro- and nanowires and thin films. Firstly, a novel method of fabricating atomic-sized constrictions in metals is presented; it relies on measuring the conduction of the device while a focused-ion-beam etching process is in progress. Secondly, it describes wires created by a very promising nanolithography technique: Focused electron/ion-beam-induced deposition. Three different gas precursors were used: (CH₃)₃Pt(CpCH₃), W(CO)₆ and Co₂(CO)₈. The thesis reports the results obtained for various physical phenomena: the metal-insulator transition, superconducting and magnetic properties, respectively. Finally, the detailed magnetotransport properties in epitaxial Fe₃O₄ thin films grown on MgO (001) are presented. Overall, the new approaches developed in this thesis have great potential for supporting novel technologies.
Tags from this library: No tags from this library for this title. Add tag(s)
Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode
TA418.9.N35 (Browse shelf) Available
Long Loan MAIN LIBRARY
T174.7 (Browse shelf) Available

Introduction -- Experimental Techniques -- Magnetotransport Properties of Epitaxial Fe3O4 thin Films -- Conduction in in Atomic-Sized Magnetic Metallic Constructions created by FIB -- Pt-C Nanowires created by FIBID and FEBID -- Superconductor W-Based Nanowires created by FIBID -- Magnetic Cobalt Nanowires created by FEBID -- Conclusions and Outlook -- CV.

This work constitutes a detailed study of electrical and magnetic properties in nanometric materials with a range of scales: atomic-sized nanoconstrictions, micro- and nanowires and thin films. Firstly, a novel method of fabricating atomic-sized constrictions in metals is presented; it relies on measuring the conduction of the device while a focused-ion-beam etching process is in progress. Secondly, it describes wires created by a very promising nanolithography technique: Focused electron/ion-beam-induced deposition. Three different gas precursors were used: (CH₃)₃Pt(CpCH₃), W(CO)₆ and Co₂(CO)₈. The thesis reports the results obtained for various physical phenomena: the metal-insulator transition, superconducting and magnetic properties, respectively. Finally, the detailed magnetotransport properties in epitaxial Fe₃O₄ thin films grown on MgO (001) are presented. Overall, the new approaches developed in this thesis have great potential for supporting novel technologies.

There are no comments for this item.

Log in to your account to post a comment.
@ Jomo Kenyatta University Of Agriculture and Technology Library

Powered by Koha