Normal view MARC view ISBD view

Molecular Conformation and Organic Photochemistry [electronic resource] :Time-resolved Photoionization Studies / by Rasmus Y. Brogaard.

by Brogaard, Rasmus Y [author.]; SpringerLink (Online service).
Material type: materialTypeLabelBookSeries: Springer Theses, Recognizing Outstanding Ph.D. Research: Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg : 2012.Description: XVI, 122 p. 50 illus., 19 illus. in color. online resource.ISBN: 9783642293818.Subject(s): Chemistry | Spectroscopy | Chemistry, Physical organic | Chemistry | Spectroscopy/Spectrometry | Atomic/Molecular Structure and Spectra | Physical ChemistryDDC classification: 543.2-543.8 Online resources: Click here to access online
Contents:
Aspects and investigation of photochemical dynamics -- A time-resolved probing method: photoionization -- Simulation of time-resolved photoionization signals -- Simulation: the Norrish type-I reaction in acetone -- Experimental setups -- Paracyclophanes I: [2+2]cycloaddition of ethylenes -- Paracyclophanes II: The Paternò-Büchi reaction -- Probing structural dynamics by interaction between chromophores.
In: Springer eBooksSummary: Rasmus Brogaard's thesis digs into the fundamental issue of how the shape of a molecules relates to its photochemical reactivity. This relation is drastically different from that of ground-state chemistry, since lifetimes of excited states are often comparable to or even shorter than the time scales of conformational changes. Combining theoretical and experimental efforts in femto-second time-resolved photoionization Rasmus Brogaard finds that a requirement for an efficient photochemical reaction is the prearrangement of the constituents in a reactive conformation. Furthermore, he is able to show that by exploiting a strong ionic interaction between two chromophores, a coherent molecular motion can be induced and probed in real-time. This way of using bichromophoric interactions provides a promising strategy for future research on conformational dynamics.
Tags from this library: No tags from this library for this title. Add tag(s)
Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode
MAIN LIBRARY
QD95-96 (Browse shelf) Available

Aspects and investigation of photochemical dynamics -- A time-resolved probing method: photoionization -- Simulation of time-resolved photoionization signals -- Simulation: the Norrish type-I reaction in acetone -- Experimental setups -- Paracyclophanes I: [2+2]cycloaddition of ethylenes -- Paracyclophanes II: The Paternò-Büchi reaction -- Probing structural dynamics by interaction between chromophores.

Rasmus Brogaard's thesis digs into the fundamental issue of how the shape of a molecules relates to its photochemical reactivity. This relation is drastically different from that of ground-state chemistry, since lifetimes of excited states are often comparable to or even shorter than the time scales of conformational changes. Combining theoretical and experimental efforts in femto-second time-resolved photoionization Rasmus Brogaard finds that a requirement for an efficient photochemical reaction is the prearrangement of the constituents in a reactive conformation. Furthermore, he is able to show that by exploiting a strong ionic interaction between two chromophores, a coherent molecular motion can be induced and probed in real-time. This way of using bichromophoric interactions provides a promising strategy for future research on conformational dynamics.

There are no comments for this item.

Log in to your account to post a comment.
@ Jomo Kenyatta University Of Agriculture and Technology Library

Powered by Koha