Normal view MARC view ISBD view

Photomodulated Optical Reflectance [electronic resource] :A Fundamental Study Aimed at Non-Destructive Carrier Profiling in Silicon / by Janusz Bogdanowicz.

by Bogdanowicz, Janusz [author.]; SpringerLink (Online service).
Material type: materialTypeLabelBookSeries: Springer Theses, Recognizing Outstanding Ph.D. Research: Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg : 2012.Description: XXIII, 201 p. 74 illus., 23 illus. in color. online resource.ISBN: 9783642301087.Subject(s): Physics | Physics | Semiconductors | Applied and Technical PhysicsDDC classification: 537.622 Online resources: Click here to access online
Contents:
Theory of Perturbation of the Reflectance -- Theory of Perturbation of the Refractive Index -- Theory of Carrier and Heat Transport in Homogeneously Doped Silicon -- Extension of the Transport Theory to Ultra-Shallow Doped Silicon Layers -- Assessment of the Model -- Application of the Model to Carrier Profling.
In: Springer eBooksSummary: One of the critical issues in semiconductor technology is the precise electrical characterization of ultra-shallow junctions. Among the plethora of measurement techniques, the optical reflectance approach developed in this work is the sole concept that does not require physical contact, making it suitable for non-invasive in-line metrology. This work develops extensively all the fundamental physical models of the photomodulated optical reflectance technique and introduces novel approaches that extend its applicability from dose monitoring towards detailed carrier profile reconstruction. It represents a significant breakthrough in junction metrology with potential for industrial implementation.
Tags from this library: No tags from this library for this title. Add tag(s)
Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode
MAIN LIBRARY
QC610.9-611.8 (Browse shelf) Available

Theory of Perturbation of the Reflectance -- Theory of Perturbation of the Refractive Index -- Theory of Carrier and Heat Transport in Homogeneously Doped Silicon -- Extension of the Transport Theory to Ultra-Shallow Doped Silicon Layers -- Assessment of the Model -- Application of the Model to Carrier Profling.

One of the critical issues in semiconductor technology is the precise electrical characterization of ultra-shallow junctions. Among the plethora of measurement techniques, the optical reflectance approach developed in this work is the sole concept that does not require physical contact, making it suitable for non-invasive in-line metrology. This work develops extensively all the fundamental physical models of the photomodulated optical reflectance technique and introduces novel approaches that extend its applicability from dose monitoring towards detailed carrier profile reconstruction. It represents a significant breakthrough in junction metrology with potential for industrial implementation.

There are no comments for this item.

Log in to your account to post a comment.
@ Jomo Kenyatta University Of Agriculture and Technology Library

Powered by Koha