Normal view MARC view ISBD view

Photoelectron Spectroscopy [electronic resource] :Bulk and Surface Electronic Structures / by Shigemasa Suga, Akira Sekiyama.

by Suga, Shigemasa [author.]; Sekiyama, Akira [author.]; SpringerLink (Online service).
Material type: materialTypeLabelBookSeries: Springer Series in Optical Sciences: 176Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg : 2014.Description: XVIII, 378 p. 192 illus., 70 illus. in color. online resource.ISBN: 9783642375309.Subject(s): Physics | Chemistry, Physical organic | Surfaces (Physics) | Physics | Optics, Optoelectronics, Plasmonics and Optical Devices | Optics and Electrodynamics | Surface and Interface Science, Thin Films | Quantum Optics | Physical Chemistry | Characterization and Evaluation of MaterialsDDC classification: 621.36 Online resources: Click here to access online
Contents:
Theoretical Background -- Instrumentation and Methodology -- Bulk and Surface Sensitivity of Photoelectron Spectroscopy -- Examples of Angle Integrated Photoelectron Spectroscopy -- Angle-Resolved Photoelectron Spectroscopy in HV-regions -- High Resolution Soft X-ray Angle-Integrated and -Resolved Photoelectron Spectroscopy of Correlated Electron Systems -- Very Low Photon Energy Photoelectron Spectroscopy -- Inverse Photoemission -- Photoelectron Diffraction -- Complementary Techniques for Studying Bulk Electronic Structures -- Surface Spectroscopy by Scanning Tunneling Microscope.
In: Springer eBooksSummary: Photoelectron spectroscopy is now becoming more and more required to investigate electronic structures of various solid materials in the bulk, on surfaces as well as at buried interfaces. The energy resolution was much improved in the last decade down to 1 meV in the low photon energy region. Now this technique is available from a few eV up to 10 keV by use of lasers, electron cyclotron resonance lamps in addition to synchrotron radiation and X-ray tubes. High resolution angle resolved photoelectron spectroscopy (ARPES) is now widely applied to band mapping of materials. It attracts a wide attention from both fundamental science and material engineering. Studies of the dynamics of excited states are feasible by time of flight spectroscopy with fully utilizing the pulse structures of synchrotron radiation as well as lasers including the free electron lasers (FEL). Spin resolved studies also made dramatic progress by using higher efficiency spin detectors and two dimensional spin detectors. Polarization dependent measurements in the whole photon energy spectrum of the spectra provide useful information on the symmetry of orbitals. The book deals with the fundamental concepts and approaches for the application of this technique to materials studies. Complementary techniques such as inverse photoemission, photoelectron diffraction, photon spectroscopy including infrared and X-ray and scanning tunneling spectroscopy are presented. This book provides not only a wide scope of photoelectron spectroscopy of solids but also extends our understanding of electronic structures beyond photoelectron spectroscopy.
Tags from this library: No tags from this library for this title. Add tag(s)
Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode
TA1501-1820 (Browse shelf) Available
QC392-449.5 (Browse shelf) Available
TA1750-1750.22 (Browse shelf) Available
Long Loan MAIN LIBRARY
QC350-467 (Browse shelf) Available

Theoretical Background -- Instrumentation and Methodology -- Bulk and Surface Sensitivity of Photoelectron Spectroscopy -- Examples of Angle Integrated Photoelectron Spectroscopy -- Angle-Resolved Photoelectron Spectroscopy in HV-regions -- High Resolution Soft X-ray Angle-Integrated and -Resolved Photoelectron Spectroscopy of Correlated Electron Systems -- Very Low Photon Energy Photoelectron Spectroscopy -- Inverse Photoemission -- Photoelectron Diffraction -- Complementary Techniques for Studying Bulk Electronic Structures -- Surface Spectroscopy by Scanning Tunneling Microscope.

Photoelectron spectroscopy is now becoming more and more required to investigate electronic structures of various solid materials in the bulk, on surfaces as well as at buried interfaces. The energy resolution was much improved in the last decade down to 1 meV in the low photon energy region. Now this technique is available from a few eV up to 10 keV by use of lasers, electron cyclotron resonance lamps in addition to synchrotron radiation and X-ray tubes. High resolution angle resolved photoelectron spectroscopy (ARPES) is now widely applied to band mapping of materials. It attracts a wide attention from both fundamental science and material engineering. Studies of the dynamics of excited states are feasible by time of flight spectroscopy with fully utilizing the pulse structures of synchrotron radiation as well as lasers including the free electron lasers (FEL). Spin resolved studies also made dramatic progress by using higher efficiency spin detectors and two dimensional spin detectors. Polarization dependent measurements in the whole photon energy spectrum of the spectra provide useful information on the symmetry of orbitals. The book deals with the fundamental concepts and approaches for the application of this technique to materials studies. Complementary techniques such as inverse photoemission, photoelectron diffraction, photon spectroscopy including infrared and X-ray and scanning tunneling spectroscopy are presented. This book provides not only a wide scope of photoelectron spectroscopy of solids but also extends our understanding of electronic structures beyond photoelectron spectroscopy.

There are no comments for this item.

Log in to your account to post a comment.
@ Jomo Kenyatta University Of Agriculture and Technology Library

Powered by Koha