Normal view MARC view ISBD view

Bio-inspired Asymmetric Design and Building of Biomimetic Smart Single Nanochannels [electronic resource] /by Xu Hou.

by Hou, Xu [author.]; SpringerLink (Online service).
Material type: materialTypeLabelBookSeries: Springer Theses, Recognizing Outstanding Ph.D. Research: Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg : 2013.Description: XIII, 127 p. 78 illus., 67 illus. in color. online resource.ISBN: 9783642380501.Subject(s): Polymers | Nanotechnology | Materials Science | Nanotechnology | Polymer Sciences | Surface and Interface Science, Thin FilmsDDC classification: 620.115 Online resources: Click here to access online
Contents:
Introduction -- Ions Responsive Asymmetric Conical Shaped Single Nanochannel -- Asymmetric pH-Gating Symmetric Hour-Glass Shaped Single Nanochannel -- Asymmetric Temperature/pH Dual-Responsive Symmetric Hour-Glass Shaped Single Nanochannel -- Asymmetric Conical Shaped Single Composite Nanochannel Materials.
In: Springer eBooksSummary: In this thesis, the author introduces various bio-inspired smart nanochannel systems. A strategy for design and preparation of novel artificial responsive symmetric/asymmetric single nanochannel systems under various symmetric/asymmetric stimuli is presented for the first time. The author’s research work utilizes ion track etching polymer nanochannels with different shapes as examples to demonstrate the feasibility of the design strategy for building novel artificial functional nanochannels using various symmetric/asymmetric physicochemical modifications. The development of these nanochannels and their potential applications is a burgeoning new area of research, and a number of exciting breakthroughs may be anticipated in the near future from the concepts and results reported in this thesis. Research into artificial functional nanochannels continues to drive new developments of various real-world applications, such as biosensors, energy conversion systems and nanofluidic devices. The work in this thesis has led to more than 15 publications in high-profile journals.
Tags from this library: No tags from this library for this title. Add tag(s)
Log in to add tags.
    average rating: 0.0 (0 votes)

Introduction -- Ions Responsive Asymmetric Conical Shaped Single Nanochannel -- Asymmetric pH-Gating Symmetric Hour-Glass Shaped Single Nanochannel -- Asymmetric Temperature/pH Dual-Responsive Symmetric Hour-Glass Shaped Single Nanochannel -- Asymmetric Conical Shaped Single Composite Nanochannel Materials.

In this thesis, the author introduces various bio-inspired smart nanochannel systems. A strategy for design and preparation of novel artificial responsive symmetric/asymmetric single nanochannel systems under various symmetric/asymmetric stimuli is presented for the first time. The author’s research work utilizes ion track etching polymer nanochannels with different shapes as examples to demonstrate the feasibility of the design strategy for building novel artificial functional nanochannels using various symmetric/asymmetric physicochemical modifications. The development of these nanochannels and their potential applications is a burgeoning new area of research, and a number of exciting breakthroughs may be anticipated in the near future from the concepts and results reported in this thesis. Research into artificial functional nanochannels continues to drive new developments of various real-world applications, such as biosensors, energy conversion systems and nanofluidic devices. The work in this thesis has led to more than 15 publications in high-profile journals.

There are no comments for this item.

Log in to your account to post a comment.
@ Jomo Kenyatta University Of Agriculture and Technology Library

Powered by Koha