Normal view MARC view ISBD view

Interpolation, Schur Functions and Moment Problems [electronic resource] /edited by Daniel Alpay, Israel Gohberg.

by Alpay, Daniel [editor.]; Gohberg, Israel [editor.]; SpringerLink (Online service).
Material type: materialTypeLabelBookSeries: Operator Theory: Advances and Applications, Linear Operators and Linear Systems: 165Publisher: Basel : Birkhäuser Basel, 2006.Description: XI, 302 p. online resource.ISBN: 9783764375478.Subject(s): Mathematics | Functional analysis | Operator theory | Systems theory | Mathematics | Operator Theory | Systems Theory, Control | Functional AnalysisDDC classification: 515.724 Online resources: Click here to access online
Contents:
Basic Boundary Interpolation for Generalized Schur Functions and Factorization of Rational J-unitary Matrix Functions -- Discrete Analogs of Canonical Systems with Pseudo-exponential Potential. Inverse Problems -- Boundary Nevanlinna—Pick Interpolation Problems for Generalized Schur Functions -- A Truncated Matricial Moment Problem on a Finite Interval -- Shift Operators Contained in Contractions, Schur Parameters and Pseudocontinuable Schur Functions -- The Matricial Carathéodory Problem in Both Nondegenerate and Degenerate Cases -- A Gohberg-Heinig Type Inversion Formula Involving Hankel Operators.
In: Springer eBooksSummary: Schur analysis originates with an 1917 article of Schur where he associated to a function, which is analytic and contractive in the open unit disk, a sequence, finite or infinite, of numbers in the open unit disk, called Schur coefficients. In signal processing, they are often named reflection coefficients. Under the word "Schur analysis" one encounters a variety of problems related to Schur functions, such as interpolation problems, moment problems, the study of the relationships between the Schur coefficients and the properties of the function, or the study of underlying operators. Such questions are also considered for some generalizations of Schur functions. Furthermore, there is an extension of the notion of a Schur function for functions that are analytic and have a positive real part in the open upper half-plane; these functions are called Carathéodory functions. This volume is almost entirely dedicated to the analysis of Schur and Carathéodory functions and to the solutions of problems for these classes.
Tags from this library: No tags from this library for this title. Add tag(s)
Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode
MAIN LIBRARY
QA329-329.9 (Browse shelf) Available

Basic Boundary Interpolation for Generalized Schur Functions and Factorization of Rational J-unitary Matrix Functions -- Discrete Analogs of Canonical Systems with Pseudo-exponential Potential. Inverse Problems -- Boundary Nevanlinna—Pick Interpolation Problems for Generalized Schur Functions -- A Truncated Matricial Moment Problem on a Finite Interval -- Shift Operators Contained in Contractions, Schur Parameters and Pseudocontinuable Schur Functions -- The Matricial Carathéodory Problem in Both Nondegenerate and Degenerate Cases -- A Gohberg-Heinig Type Inversion Formula Involving Hankel Operators.

Schur analysis originates with an 1917 article of Schur where he associated to a function, which is analytic and contractive in the open unit disk, a sequence, finite or infinite, of numbers in the open unit disk, called Schur coefficients. In signal processing, they are often named reflection coefficients. Under the word "Schur analysis" one encounters a variety of problems related to Schur functions, such as interpolation problems, moment problems, the study of the relationships between the Schur coefficients and the properties of the function, or the study of underlying operators. Such questions are also considered for some generalizations of Schur functions. Furthermore, there is an extension of the notion of a Schur function for functions that are analytic and have a positive real part in the open upper half-plane; these functions are called Carathéodory functions. This volume is almost entirely dedicated to the analysis of Schur and Carathéodory functions and to the solutions of problems for these classes.

There are no comments for this item.

Log in to your account to post a comment.
@ Jomo Kenyatta University Of Agriculture and Technology Library

Powered by Koha