Normal view MARC view ISBD view

Theory of Gravitational Interactions [electronic resource] /by Maurizio Gasperini.

by Gasperini, Maurizio [author.]; SpringerLink (Online service).
Material type: materialTypeLabelBookSeries: Undergraduate Lecture Notes in Physics: Publisher: Milano : Springer Milan : 2013.Description: XVI, 322 p. 8 illus. online resource.ISBN: 9788847026919.Subject(s): Physics | Physics | Classical and Quantum Gravitation, Relativity Theory | Quantum Field Theories, String Theory | Cosmology | Mathematical PhysicsDDC classification: 530.1 Online resources: Click here to access online
Contents:
Elementary notions of relativistic field theory -- Towards a relativistic theory of gravity -- Tensor calculus in a Riemannian manifold -- Maxwell equations and Riemann geometry -- Test bodies and signals in a Riemann spacetime -- Geodesic deviation and curvature tensor -- The Einstein equations for the gravitational field -- The weak field approximation -- Gravitational waves -- The Schwarzschild solution -- The Kasner solution -- Vierbeins and Lorentz connection -- The Dirac equation in a gravitational field -- Supersimmetry and supergravity -- Appendix A. The language of differential forms -- Appendix B. Higher-dimensional gravity.
In: Springer eBooksSummary: This reference textbook is an up-to-date and self-contained introduction to the theory of gravitational interactions. The first part of the book follows the traditional presentation of general relativity as a geometric theory of the macroscopic gravitational field. A second, advanced part then discusses the deep analogies (and differences) between a geometric theory of gravity and the gauge theories of the other fundamental interactions. This fills a gap which is present in the context of the traditional approach to general relativity, and which usually makes students puzzled about the role of gravity. The necessary notions of differential geometry are reduced to the minimum, leaving more room for those aspects of gravitational physics of current phenomenological and theoretical interest, such as the properties of gravitational waves, the gravitational interactions of spinors, and the supersymmetric and higher-dimensional generalization of the Einstein equations. Theory of Gravitational Interactions will be of particular value to undergraduate students pursuing a theoretical or astroparticle curriculum. It can also be used by those teaching related subjects, by PhD students and young researchers working in different scientific sectors but wishing to enlarge their spectrum of interests, and, in general, by all scholars interested in the modern aspects and problems of gravitational interaction.
Tags from this library: No tags from this library for this title. Add tag(s)
Log in to add tags.
    average rating: 0.0 (0 votes)

Elementary notions of relativistic field theory -- Towards a relativistic theory of gravity -- Tensor calculus in a Riemannian manifold -- Maxwell equations and Riemann geometry -- Test bodies and signals in a Riemann spacetime -- Geodesic deviation and curvature tensor -- The Einstein equations for the gravitational field -- The weak field approximation -- Gravitational waves -- The Schwarzschild solution -- The Kasner solution -- Vierbeins and Lorentz connection -- The Dirac equation in a gravitational field -- Supersimmetry and supergravity -- Appendix A. The language of differential forms -- Appendix B. Higher-dimensional gravity.

This reference textbook is an up-to-date and self-contained introduction to the theory of gravitational interactions. The first part of the book follows the traditional presentation of general relativity as a geometric theory of the macroscopic gravitational field. A second, advanced part then discusses the deep analogies (and differences) between a geometric theory of gravity and the gauge theories of the other fundamental interactions. This fills a gap which is present in the context of the traditional approach to general relativity, and which usually makes students puzzled about the role of gravity. The necessary notions of differential geometry are reduced to the minimum, leaving more room for those aspects of gravitational physics of current phenomenological and theoretical interest, such as the properties of gravitational waves, the gravitational interactions of spinors, and the supersymmetric and higher-dimensional generalization of the Einstein equations. Theory of Gravitational Interactions will be of particular value to undergraduate students pursuing a theoretical or astroparticle curriculum. It can also be used by those teaching related subjects, by PhD students and young researchers working in different scientific sectors but wishing to enlarge their spectrum of interests, and, in general, by all scholars interested in the modern aspects and problems of gravitational interaction.

There are no comments for this item.

Log in to your account to post a comment.
@ Jomo Kenyatta University Of Agriculture and Technology Library

Powered by Koha