Normal view MARC view ISBD view

Hyperbolic Triangle Centers [electronic resource] :The Special Relativistic Approach / by A.A. Ungar.

by Ungar, A.A [author.]; SpringerLink (Online service).
Material type: materialTypeLabelBookSeries: Fundamental Theories of Physics: 166Publisher: Dordrecht : Springer Netherlands : 2010.Description: XVI, 319p. online resource.ISBN: 9789048186372.Subject(s): Physics | Mathematics | Astronomy | Physics | Classical and Quantum Gravitation, Relativity Theory | Applications of Mathematics | Theoretical, Mathematical and Computational Physics | Astronomy, Astrophysics and CosmologyDDC classification: 530.1 Online resources: Click here to access online
Contents:
The Special Relativistic Approach To Hyperbolic Geometry -- Einstein Gyrogroups -- Einstein Gyrovector Spaces -- When Einstein Meets Minkowski -- Mathematical Tools For Hyperbolic Geometry -- Euclidean and Hyperbolic Barycentric Coordinates -- Gyrovectors -- Gyrotrigonometry -- Hyperbolic Triangle Centers -- Gyrotriangle Gyrocenters -- Gyrotriangle Exgyrocircles -- Gyrotriangle Gyrocevians -- Epilogue.
In: Springer eBooksSummary: After A. Ungar had introduced vector algebra and Cartesian coordinates into hyperbolic geometry in his earlier books, along with novel applications in Einstein’s special theory of relativity, the purpose of his new book is to introduce hyperbolic barycentric coordinates, another important concept to embed Euclidean geometry into hyperbolic geometry. It will be demonstrated that, in full analogy to classical mechanics where barycentric coordinates are related to the Newtonian mass, barycentric coordinates are related to the Einsteinian relativistic mass in hyperbolic geometry. Contrary to general belief, Einstein’s relativistic mass hence meshes up extraordinarily well with Minkowski’s four-vector formalism of special relativity. In Euclidean geometry, barycentric coordinates can be used to determine various triangle centers. While there are many known Euclidean triangle centers, only few hyperbolic triangle centers are known, and none of the known hyperbolic triangle centers has been determined analytically with respect to its hyperbolic triangle vertices. In his recent research, the author set the ground for investigating hyperbolic triangle centers via hyperbolic barycentric coordinates, and one of the purposes of this book is to initiate a study of hyperbolic triangle centers in full analogy with the rich study of Euclidean triangle centers. Owing to its novelty, the book is aimed at a large audience: it can be enjoyed equally by upper-level undergraduates, graduate students, researchers and academics in geometry, abstract algebra, theoretical physics and astronomy. For a fruitful reading of this book, familiarity with Euclidean geometry is assumed. Mathematical-physicists and theoretical physicists are likely to enjoy the study of Einstein’s special relativity in terms of its underlying hyperbolic geometry. Geometers may enjoy the hunt for new hyperbolic triangle centers and, finally, astronomers may use hyperbolic barycentric coordinates in the velocity space of cosmology.
Tags from this library: No tags from this library for this title. Add tag(s)
Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode
QC173.5-173.65 (Browse shelf) Available
Long Loan MAIN LIBRARY
QC178 (Browse shelf) Available

The Special Relativistic Approach To Hyperbolic Geometry -- Einstein Gyrogroups -- Einstein Gyrovector Spaces -- When Einstein Meets Minkowski -- Mathematical Tools For Hyperbolic Geometry -- Euclidean and Hyperbolic Barycentric Coordinates -- Gyrovectors -- Gyrotrigonometry -- Hyperbolic Triangle Centers -- Gyrotriangle Gyrocenters -- Gyrotriangle Exgyrocircles -- Gyrotriangle Gyrocevians -- Epilogue.

After A. Ungar had introduced vector algebra and Cartesian coordinates into hyperbolic geometry in his earlier books, along with novel applications in Einstein’s special theory of relativity, the purpose of his new book is to introduce hyperbolic barycentric coordinates, another important concept to embed Euclidean geometry into hyperbolic geometry. It will be demonstrated that, in full analogy to classical mechanics where barycentric coordinates are related to the Newtonian mass, barycentric coordinates are related to the Einsteinian relativistic mass in hyperbolic geometry. Contrary to general belief, Einstein’s relativistic mass hence meshes up extraordinarily well with Minkowski’s four-vector formalism of special relativity. In Euclidean geometry, barycentric coordinates can be used to determine various triangle centers. While there are many known Euclidean triangle centers, only few hyperbolic triangle centers are known, and none of the known hyperbolic triangle centers has been determined analytically with respect to its hyperbolic triangle vertices. In his recent research, the author set the ground for investigating hyperbolic triangle centers via hyperbolic barycentric coordinates, and one of the purposes of this book is to initiate a study of hyperbolic triangle centers in full analogy with the rich study of Euclidean triangle centers. Owing to its novelty, the book is aimed at a large audience: it can be enjoyed equally by upper-level undergraduates, graduate students, researchers and academics in geometry, abstract algebra, theoretical physics and astronomy. For a fruitful reading of this book, familiarity with Euclidean geometry is assumed. Mathematical-physicists and theoretical physicists are likely to enjoy the study of Einstein’s special relativity in terms of its underlying hyperbolic geometry. Geometers may enjoy the hunt for new hyperbolic triangle centers and, finally, astronomers may use hyperbolic barycentric coordinates in the velocity space of cosmology.

There are no comments for this item.

Log in to your account to post a comment.
@ Jomo Kenyatta University Of Agriculture and Technology Library

Powered by Koha