Normal view MARC view ISBD view

Mathematical Analysis [electronic resource] :Foundations and Advanced Techniques for Functions of Several Variables / by Mariano Giaquinta, Giuseppe Modica.

by Giaquinta, Mariano [author.]; Modica, Giuseppe [author.]; SpringerLink (Online service).
Material type: materialTypeLabelBookPublisher: Boston : Birkhäuser Boston, 2012.Description: XIII, 405p. 66 illus. online resource.ISBN: 9780817683108.Subject(s): Mathematics | Global analysis (Mathematics) | Mathematics | AnalysisDDC classification: 515 Online resources: Click here to access online
Contents:
Preface -- Spaces of Summable Functions and Partial Differential Equations -- Convex Sets and Convex Functions -- The Formalism of the Calculus of Variations -- Differential Forms -- Measures and Integrations -- Hausdorff and Radon Measures -- Mathematicians and Other Scientists -- Bibliographical Notes -- Index.
In: Springer eBooksSummary: Mathematical Analysis: Foundations and Advanced Techniques for Functions of Several Variables builds upon the basic ideas and techniques of differential and integral calculus for functions of several variables, as outlined in an earlier introductory volume. The presentation is largely focused on the foundations of measure and integration theory. The book begins with a discussion of the geometry of Hilbert spaces, convex functions and domains, and differential forms, particularly k-forms. The exposition continues with an introduction to the calculus of variations with applications to geometric optics and mechanics. The authors conclude with the study of measure and integration theory – Borel, Radon, and Hausdorff measures and the derivation of measures. An appendix highlights important mathematicians and other scientists whose contributions have made a great impact on the development of theories in analysis. This work may be used as a supplementary text in the classroom or for self-study by advanced undergraduate and graduate students and as a valuable reference for researchers in mathematics, physics, and engineering. One of the key strengths of this presentation, along with the other four books on analysis published by the authors, is the motivation for understanding the subject through examples, observations, exercises, and illustrations. Other books published by the authors – all of which provide the reader with a strong foundation in modern-day analysis – include: * Mathematical Analysis: Functions of One Variable * Mathematical Analysis: Approximation and Discrete Processes * Mathematical Analysis: Linear and Metric Structures and Continuity * Mathematical Analysis: An Introduction to Functions of Several Variables Reviews of previous volumes of Mathematical Analysis: The presentation of the theory is clearly arranged, all theorems have rigorous proofs, and every chapter closes with a summing up of the results and exercises with different requirements. . . . This book is excellently suitable for students in mathematics, physics, engineering, computer science and all students of technological and scientific faculties. —Journal of Analysis and its Applications The exposition requires only a sound knowledge of calculus and the functions of one variable.  A key feature of this lively yet rigorous and systematic treatment is the historical accounts of ideas and methods of the subject.   Ideas in mathematics develop in cultural, historical and economical contexts, thus the authors made brief accounts of those aspects and used a large number of beautiful illustrations.   —Zentralblatt MATH
Tags from this library: No tags from this library for this title. Add tag(s)
Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode
QA299.6-433 | QA299.6-433 (Browse shelf) Available

Preface -- Spaces of Summable Functions and Partial Differential Equations -- Convex Sets and Convex Functions -- The Formalism of the Calculus of Variations -- Differential Forms -- Measures and Integrations -- Hausdorff and Radon Measures -- Mathematicians and Other Scientists -- Bibliographical Notes -- Index.

Mathematical Analysis: Foundations and Advanced Techniques for Functions of Several Variables builds upon the basic ideas and techniques of differential and integral calculus for functions of several variables, as outlined in an earlier introductory volume. The presentation is largely focused on the foundations of measure and integration theory. The book begins with a discussion of the geometry of Hilbert spaces, convex functions and domains, and differential forms, particularly k-forms. The exposition continues with an introduction to the calculus of variations with applications to geometric optics and mechanics. The authors conclude with the study of measure and integration theory – Borel, Radon, and Hausdorff measures and the derivation of measures. An appendix highlights important mathematicians and other scientists whose contributions have made a great impact on the development of theories in analysis. This work may be used as a supplementary text in the classroom or for self-study by advanced undergraduate and graduate students and as a valuable reference for researchers in mathematics, physics, and engineering. One of the key strengths of this presentation, along with the other four books on analysis published by the authors, is the motivation for understanding the subject through examples, observations, exercises, and illustrations. Other books published by the authors – all of which provide the reader with a strong foundation in modern-day analysis – include: * Mathematical Analysis: Functions of One Variable * Mathematical Analysis: Approximation and Discrete Processes * Mathematical Analysis: Linear and Metric Structures and Continuity * Mathematical Analysis: An Introduction to Functions of Several Variables Reviews of previous volumes of Mathematical Analysis: The presentation of the theory is clearly arranged, all theorems have rigorous proofs, and every chapter closes with a summing up of the results and exercises with different requirements. . . . This book is excellently suitable for students in mathematics, physics, engineering, computer science and all students of technological and scientific faculties. —Journal of Analysis and its Applications The exposition requires only a sound knowledge of calculus and the functions of one variable.  A key feature of this lively yet rigorous and systematic treatment is the historical accounts of ideas and methods of the subject.   Ideas in mathematics develop in cultural, historical and economical contexts, thus the authors made brief accounts of those aspects and used a large number of beautiful illustrations.   —Zentralblatt MATH

There are no comments for this item.

Log in to your account to post a comment.
@ Jomo Kenyatta University Of Agriculture and Technology Library

Powered by Koha