Normal view MARC view ISBD view

Geometric Fundamentals of Robotics [electronic resource] /by J. M. Selig.

by Selig, J. M [author.]; SpringerLink (Online service).
Material type: materialTypeLabelBookSeries: Monographs in Computer Science: Publisher: New York, NY : Springer New York, 2005.Edition: Second Edition.Description: XVII, 398 p. online resource.ISBN: 9780387272740.Subject(s): Computer science | Artificial intelligence | Topological Groups | Mathematics | Global differential geometry | Computer Science | Artificial Intelligence (incl. Robotics) | Applications of Mathematics | Math Applications in Computer Science | Differential Geometry | Topological Groups, Lie Groups | Automation and RoboticsDDC classification: 006.3 Online resources: Click here to access online
Contents:
Lie Groups -- Subgroups -- Lie Algebra -- A Little Kinematics -- Line Geometry -- Representation Theory -- Screw Systems -- Clifford Algebra -- A Little More Kinematics -- The Study Quadric -- Statics -- Dynamics -- Constrained Dynamics -- Differential Geometry.
In: Springer eBooksSummary: Geometric Fundamentals of Robotics provides an elegant introduction to the geometric concepts that are important to applications in robotics. This second edition is still unique in providing a deep understanding of the subject: rather than focusing on computational results in kinematics and robotics, it includes significant state-of-the art material that reflects important advances in the field, connecting robotics back to mathematical fundamentals in group theory and geometry. Key features: * Begins with a brief survey of basic notions in algebraic and differential geometry, Lie groups and Lie algebras * Examines how, in a new chapter, Clifford algebra is relevant to robot kinematics and Euclidean geometry in 3D * Introduces mathematical concepts and methods using examples from robotics * Solves substantial problems in the design and control of robots via new methods * Provides solutions to well-known enumerative problems in robot kinematics using intersection theory on the group of rigid body motions * Extends dynamics, in another new chapter, to robots with end-effector constraints, which lead to equations of motion for parallel manipulators Geometric Fundamentals of Robotics serves a wide audience of graduate students as well as researchers in a variety of areas, notably mechanical engineering, computer science, and applied mathematics. It is also an invaluable reference text. ----- From a Review of the First Edition: "The majority of textbooks dealing with this subject cover various topics in kinematics, dynamics, control, sensing, and planning for robot manipulators. The distinguishing feature of this book is that it introduces mathematical tools, especially geometric ones, for solving problems in robotics. In particular, Lie groups and allied algebraic and geometric concepts are presented in a comprehensive manner to an audience interested in robotics. The aim of the author is to show the power and elegance of these methods as they apply to problems in robotics." --MathSciNet
Tags from this library: No tags from this library for this title. Add tag(s)
Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode
TJ210.2-211.495 (Browse shelf) Available
Long Loan MAIN LIBRARY
Q334-342 (Browse shelf) Available

Lie Groups -- Subgroups -- Lie Algebra -- A Little Kinematics -- Line Geometry -- Representation Theory -- Screw Systems -- Clifford Algebra -- A Little More Kinematics -- The Study Quadric -- Statics -- Dynamics -- Constrained Dynamics -- Differential Geometry.

Geometric Fundamentals of Robotics provides an elegant introduction to the geometric concepts that are important to applications in robotics. This second edition is still unique in providing a deep understanding of the subject: rather than focusing on computational results in kinematics and robotics, it includes significant state-of-the art material that reflects important advances in the field, connecting robotics back to mathematical fundamentals in group theory and geometry. Key features: * Begins with a brief survey of basic notions in algebraic and differential geometry, Lie groups and Lie algebras * Examines how, in a new chapter, Clifford algebra is relevant to robot kinematics and Euclidean geometry in 3D * Introduces mathematical concepts and methods using examples from robotics * Solves substantial problems in the design and control of robots via new methods * Provides solutions to well-known enumerative problems in robot kinematics using intersection theory on the group of rigid body motions * Extends dynamics, in another new chapter, to robots with end-effector constraints, which lead to equations of motion for parallel manipulators Geometric Fundamentals of Robotics serves a wide audience of graduate students as well as researchers in a variety of areas, notably mechanical engineering, computer science, and applied mathematics. It is also an invaluable reference text. ----- From a Review of the First Edition: "The majority of textbooks dealing with this subject cover various topics in kinematics, dynamics, control, sensing, and planning for robot manipulators. The distinguishing feature of this book is that it introduces mathematical tools, especially geometric ones, for solving problems in robotics. In particular, Lie groups and allied algebraic and geometric concepts are presented in a comprehensive manner to an audience interested in robotics. The aim of the author is to show the power and elegance of these methods as they apply to problems in robotics." --MathSciNet

There are no comments for this item.

Log in to your account to post a comment.
@ Jomo Kenyatta University Of Agriculture and Technology Library

Powered by Koha