Normal view MARC view ISBD view

Methods and Procedures for the Verification and Validation of Artificial Neural Networks [electronic resource] /by Brian J. Taylor.

by Taylor, Brian J [author.]; SpringerLink (Online service).
Material type: materialTypeLabelBookPublisher: Boston, MA : Springer US, 2006.Description: XI, 277 p. online resource.ISBN: 9780387294858.Subject(s): Computer science | Computer network architectures | Computer Communication Networks | Artificial intelligence | Computer vision | Optical pattern recognition | Computer Science | Computer Communication Networks | Artificial Intelligence (incl. Robotics) | User Interfaces and Human Computer Interaction | Computer Systems Organization and Communication Networks | Computer Imaging, Vision, Pattern Recognition and Graphics | Pattern RecognitionDDC classification: 004.6 Online resources: Click here to access online
Contents:
Background of the Verification and Validation of Neural Networks -- Augmentation of Current Verification and Validation Practices -- Risk and Hazard Analysis for Neural Network Systems -- Validation of Neural Networks Via Taxonomic Evaluation -- Stability Properties of Neural Networks -- Neural Network Verification -- Neural Network Visualization Techniques -- Rule Extraction as a Formal Method -- Automated Test Generation for Testing Neural Network Systems -- Run-Time Assessment of Neural Network Control Systems.
In: Springer eBooksSummary: Artificial neural networks are a form of artificial intelligence that have the capability of learning, growing, and adapting with dynamic environments. With the ability to learn and adapt, artificial neural networks introduce new potential solutions and approaches to some of the more challenging problems that the United States faces as it pursues the vision of space exploration and develops other system applications that must change and adapt after deployment. Neural networks are members of a class of software that have the potential to enable intelligent computational systems capable of simulating characteristics of biological thinking and learning. Currently no standards exist to verify and validate neural network-based systems. NASA Independent Verification and Validation Facility has contracted the Institute for Scientific Research, Inc. to perform research on this topic and develop a comprehensive guide to performing V&V on adaptive systems, with emphasis on neural networks used in safety-critical or mission-critical applications. Methods and Procedures for the Verification and Validation of Artificial Neural Networks is the culmination of the first steps in that research. This volume introduces some of the more promising methods and techniques used for the verification and validation (V&V) of neural networks and adaptive systems. A comprehensive guide to performing V&V on neural network systems, aligned with the IEEE Standard for Software Verification and Validation, will follow this book. The NASA IV&V and the Institute for Scientific Research, Inc. are working to be at the forefront of software safety and assurance for neural network and adaptive systems. Methods and Procedures for the Verification and Validation of Artificial Neural Networks is structured for research scientists and V&V practitioners in industry to assure neural network software systems for future NASA missions and other applications. This book is also suitable for graduate-level students in computer science and computer engineering.
Tags from this library: No tags from this library for this title. Add tag(s)
Log in to add tags.
    average rating: 0.0 (0 votes)

Background of the Verification and Validation of Neural Networks -- Augmentation of Current Verification and Validation Practices -- Risk and Hazard Analysis for Neural Network Systems -- Validation of Neural Networks Via Taxonomic Evaluation -- Stability Properties of Neural Networks -- Neural Network Verification -- Neural Network Visualization Techniques -- Rule Extraction as a Formal Method -- Automated Test Generation for Testing Neural Network Systems -- Run-Time Assessment of Neural Network Control Systems.

Artificial neural networks are a form of artificial intelligence that have the capability of learning, growing, and adapting with dynamic environments. With the ability to learn and adapt, artificial neural networks introduce new potential solutions and approaches to some of the more challenging problems that the United States faces as it pursues the vision of space exploration and develops other system applications that must change and adapt after deployment. Neural networks are members of a class of software that have the potential to enable intelligent computational systems capable of simulating characteristics of biological thinking and learning. Currently no standards exist to verify and validate neural network-based systems. NASA Independent Verification and Validation Facility has contracted the Institute for Scientific Research, Inc. to perform research on this topic and develop a comprehensive guide to performing V&V on adaptive systems, with emphasis on neural networks used in safety-critical or mission-critical applications. Methods and Procedures for the Verification and Validation of Artificial Neural Networks is the culmination of the first steps in that research. This volume introduces some of the more promising methods and techniques used for the verification and validation (V&V) of neural networks and adaptive systems. A comprehensive guide to performing V&V on neural network systems, aligned with the IEEE Standard for Software Verification and Validation, will follow this book. The NASA IV&V and the Institute for Scientific Research, Inc. are working to be at the forefront of software safety and assurance for neural network and adaptive systems. Methods and Procedures for the Verification and Validation of Artificial Neural Networks is structured for research scientists and V&V practitioners in industry to assure neural network software systems for future NASA missions and other applications. This book is also suitable for graduate-level students in computer science and computer engineering.

There are no comments for this item.

Log in to your account to post a comment.
@ Jomo Kenyatta University Of Agriculture and Technology Library

Powered by Koha