Normal view MARC view ISBD view

Instability in Models Connected with Fluid Flows I [electronic resource] /edited by Claude Bardos, Andrei Fursikov.

by Bardos, Claude [editor.]; Fursikov, Andrei [editor.]; SpringerLink (Online service).
Material type: materialTypeLabelBookSeries: International Mathematical Series: 6Publisher: New York, NY : Springer New York, 2008.Description: online resource.ISBN: 9780387752174.Subject(s): Mathematics | Global analysis (Mathematics) | Differential equations, partial | Computer science -- Mathematics | Mathematical optimization | Thermodynamics | Mechanics, applied | Mathematics | Analysis | Calculus of Variations and Optimal Control; Optimization | Computational Mathematics and Numerical Analysis | Partial Differential Equations | Theoretical and Applied Mechanics | Mechanics, Fluids, ThermodynamicsDDC classification: 515 Online resources: Click here to access online
Contents:
Solid Controllability in Fluid Dynamics -- Analyticity of Periodic Solutions of the 2D Boussinesq System -- Nonlinear Dynamics of a System of Particle-Like Wavepackets -- Attractors for Nonautonomous Navier–Stokes System and Other Partial Differential Equations -- Recent Results in Large Amplitude Monophase Nonlinear Geometric Optics -- Existence Theorems for the 3D–Navier–Stokes System Having as Initial Conditions Sums of Plane Waves -- Bursting Dynamics of the 3D Euler Equations in Cylindrical Domains -- Increased Stability in the Cauchy Problem for Some Elliptic Equations.
In: Springer eBooksSummary: Instability in Models Connected with Fluid Flows I presents chapters from world renowned specialists. The stability of mathematical models simulating physical processes is discussed in topics on control theory, first order linear and nonlinear equations, water waves, free boundary problems, large time asymptotics of solutions, stochastic equations, Euler equations, Navier-Stokes equations, and other PDEs of fluid mechanics. Fields covered include: controllability and accessibility properties of the Navier- Stokes and Euler systems, nonlinear dynamics of particle-like wavepackets, attractors of nonautonomous Navier-Stokes systems, large amplitude monophase nonlinear geometric optics, existence results for 3D Navier-Stokes equations and smoothness results for 2D Boussinesq equations, instability of incompressible Euler equations, increased stability in the Cauchy problem for elliptic equations. Contributors include: Andrey Agrachev (Italy-Russia) and Andrey Sarychev (Italy); Maxim Arnold (Russia); Anatoli Babin (USA) and Alexander Figotin (USA); Vladimir Chepyzhov (Russia) and Mark Vishik (Russia); Christophe Cheverry (France); Efim Dinaburg (Russia) and Yakov Sinai (USA-Russia); Francois Golse (France), Alex Mahalov (USA), and Basil Nicolaenko (USA); Victor Isakov (USA)
Tags from this library: No tags from this library for this title. Add tag(s)
Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode
MAIN LIBRARY
QA299.6-433 (Browse shelf) Available

Solid Controllability in Fluid Dynamics -- Analyticity of Periodic Solutions of the 2D Boussinesq System -- Nonlinear Dynamics of a System of Particle-Like Wavepackets -- Attractors for Nonautonomous Navier–Stokes System and Other Partial Differential Equations -- Recent Results in Large Amplitude Monophase Nonlinear Geometric Optics -- Existence Theorems for the 3D–Navier–Stokes System Having as Initial Conditions Sums of Plane Waves -- Bursting Dynamics of the 3D Euler Equations in Cylindrical Domains -- Increased Stability in the Cauchy Problem for Some Elliptic Equations.

Instability in Models Connected with Fluid Flows I presents chapters from world renowned specialists. The stability of mathematical models simulating physical processes is discussed in topics on control theory, first order linear and nonlinear equations, water waves, free boundary problems, large time asymptotics of solutions, stochastic equations, Euler equations, Navier-Stokes equations, and other PDEs of fluid mechanics. Fields covered include: controllability and accessibility properties of the Navier- Stokes and Euler systems, nonlinear dynamics of particle-like wavepackets, attractors of nonautonomous Navier-Stokes systems, large amplitude monophase nonlinear geometric optics, existence results for 3D Navier-Stokes equations and smoothness results for 2D Boussinesq equations, instability of incompressible Euler equations, increased stability in the Cauchy problem for elliptic equations. Contributors include: Andrey Agrachev (Italy-Russia) and Andrey Sarychev (Italy); Maxim Arnold (Russia); Anatoli Babin (USA) and Alexander Figotin (USA); Vladimir Chepyzhov (Russia) and Mark Vishik (Russia); Christophe Cheverry (France); Efim Dinaburg (Russia) and Yakov Sinai (USA-Russia); Francois Golse (France), Alex Mahalov (USA), and Basil Nicolaenko (USA); Victor Isakov (USA)

There are no comments for this item.

Log in to your account to post a comment.
@ Jomo Kenyatta University Of Agriculture and Technology Library

Powered by Koha