Normal view MARC view ISBD view

Natural Resistance Mechanisms of Plants to Viruses [electronic resource] /edited by Gad Loebenstein, John Peter Carr.

by Loebenstein, Gad [editor.]; Carr, John Peter [editor.]; SpringerLink (Online service).
Material type: materialTypeLabelBookPublisher: Dordrecht : Springer Netherlands, 2006.Description: XXIV, 532p. 7 illus. in color. online resource.ISBN: 9781402037801.Subject(s): Life sciences | Agriculture | Botany | Plant diseases | Life Sciences | Plant Sciences | Agriculture | Plant PathologyDDC classification: 580 Online resources: Click here to access online
Contents:
General Aspects -- Applied Aspects of Induced Resistance to Plant Virus Infection -- Viral Determinants of Resistance Versus Susceptibility -- RNA Silencing: A Natural Resistance Mechanism in Plants -- Recognition and Signal Transduction Associated with R Gene-mediated Resistance -- The Local Lesion Response -- Induced Resistance Mechanisms -- Host Gene-mediated Virus Resistance Mechanisms and Signaling in Arabidopsis -- Viral Counter-Defense Molecules -- Dark Greens Islands: the Phenomenon -- Resistance to Infection -- Reducing Virus Associated Crop Loss Through Resistance to Insect Vectors -- Cross-Protection -- Arrest in Viral Transport as the Basis for Plant Resistance to Infection -- Plant Metabolism Associated with Resistance and Susceptibility -- Crop Related -- Resistance to Viruses in Potato -- Common Beans -- Virus Susceptibility and Resistance in Lettuce -- Resistance to Tobacco Mosaic Virus and Tomato Mosaic Virus in Tomato -- Resistance to Turnip mosaic virus in the Brassicaceae -- Virus Resistance in Rice -- Cassava -- Natural Resistance Mechanisms to Viruses in Barley -- Resistance to Tomato yellow leaf curl virus in Tomato.
In: Springer eBooksSummary: This book is a first attempt to link well known plant resistance phenomena with emerging concepts in molecular biology. Resistance phenomena such as the local lesion response, induced resistance, "green islands" and resistance in various crop plants are linked with new information on gene-silencing mechanisms, gene silencing suppressors, movement proteins and plasmodesmatal gating, downstream signalling components, etc.
Tags from this library: No tags from this library for this title. Add tag(s)
Log in to add tags.
    average rating: 0.0 (0 votes)

General Aspects -- Applied Aspects of Induced Resistance to Plant Virus Infection -- Viral Determinants of Resistance Versus Susceptibility -- RNA Silencing: A Natural Resistance Mechanism in Plants -- Recognition and Signal Transduction Associated with R Gene-mediated Resistance -- The Local Lesion Response -- Induced Resistance Mechanisms -- Host Gene-mediated Virus Resistance Mechanisms and Signaling in Arabidopsis -- Viral Counter-Defense Molecules -- Dark Greens Islands: the Phenomenon -- Resistance to Infection -- Reducing Virus Associated Crop Loss Through Resistance to Insect Vectors -- Cross-Protection -- Arrest in Viral Transport as the Basis for Plant Resistance to Infection -- Plant Metabolism Associated with Resistance and Susceptibility -- Crop Related -- Resistance to Viruses in Potato -- Common Beans -- Virus Susceptibility and Resistance in Lettuce -- Resistance to Tobacco Mosaic Virus and Tomato Mosaic Virus in Tomato -- Resistance to Turnip mosaic virus in the Brassicaceae -- Virus Resistance in Rice -- Cassava -- Natural Resistance Mechanisms to Viruses in Barley -- Resistance to Tomato yellow leaf curl virus in Tomato.

This book is a first attempt to link well known plant resistance phenomena with emerging concepts in molecular biology. Resistance phenomena such as the local lesion response, induced resistance, "green islands" and resistance in various crop plants are linked with new information on gene-silencing mechanisms, gene silencing suppressors, movement proteins and plasmodesmatal gating, downstream signalling components, etc.

There are no comments for this item.

Log in to your account to post a comment.
@ Jomo Kenyatta University Of Agriculture and Technology Library

Powered by Koha