Blind Speech Separation [electronic resource] /edited by Shoji Makino, Hiroshi Sawada, Te-Won Lee.
by Makino, Shoji [editor.]; Sawada, Hiroshi [editor.]; Lee, Te-Won [editor.]; SpringerLink (Online service).
Material type:
Item type | Current location | Call number | Status | Date due | Barcode |
---|---|---|---|---|---|
TA1637-1638 (Browse shelf) | Available | ||||
TK7882.S65 (Browse shelf) | Available | ||||
Long Loan | MAIN LIBRARY | TK5102.9 (Browse shelf) | Available |
Browsing MAIN LIBRARY Shelves Close shelf browser
TK5102.9 Imaging for Detection and Identification | TK5102.9 Continuous-Time Systems | TK5102.9 Algorithm Collections for Digital Signal Processing Applications Using Matlab | TK5102.9 Blind Speech Separation | TK5102.9 Ultra Low-Power Biomedical Signal Processing | TK5102.9 Smart Cameras | TK5102.9 Wavelets |
Multiple Microphone Blind Speech Separation with ICA -- Convolutive Blind Source Separation for Audio Signals -- Frequency-Domain Blind Source Separation -- Blind Source Separation using Space–Time Independent Component Analysis -- TRINICON-based Blind System Identification with Application to Multiple-Source Localization and Separation -- SIMO-Model-Based Blind Source Separation – Principle and its Applications -- Independent Vector Analysis for Convolutive Blind Speech Separation -- Relative Newton and Smoothing Multiplier Optimization Methods for Blind Source Separation -- Underdetermined Blind Speech Separation with Sparseness -- The DUET Blind Source Separation Algorithm -- K-means Based Underdetermined Blind Speech Separation -- Underdetermined Blind Source Separation of Convolutive Mixtures by Hierarchical Clustering and L1-Norm Minimization -- Bayesian Audio Source Separation -- Single Microphone Blind Speech Separation -- Monaural Source Separation -- Probabilistic Decompositions of Spectra for Sound Separation -- Sparsification for Monaural Source Separation -- Monaural Speech Separation by Support Vector Machines: Bridging the Divide Between Supervised and Unsupervised Learning Methods.
This is the first book to provide a cutting edge reference to the fascinating topic of blind source separation (BSS) for convolved speech mixtures. Through contributions by the foremost experts on the subject, the book provides an up-to-date account of research findings, explains the underlying theory, and discusses potential applications. The individual chapters are designed to be tutorial in nature with specific emphasis on an in-depth treatment of state of the art techniques. Blind Speech Separation is divided into three parts: Part 1 presents overdetermined or critically determined BSS. Here the main technology is independent component analysis (ICA). ICA is a statistical method for extracting mutually independent sources from their mixtures. This approach utilizes spatial diversity to discriminate between desired and undesired components, i.e., it reduces the undesired components by forming a spatial null towards them. It is, in fact, a blind adaptive beamformer realized by unsupervised adaptive filtering. Part 2 addresses underdetermined BSS, where there are fewer microphones than source signals. Here, the sparseness of speech sources is very useful; we can utilize time-frequency diversity, where sources are active in different regions of the time-frequency plane. Part 3 presents monaural BSS where there is only one microphone. Here, we can separate a mixture by using the harmonicity and temporal structure of the sources. We can build a probabilistic framework by assuming a source model, and separate a mixture by maximizing the a posteriori probability of the sources.
There are no comments for this item.