Normal view MARC view ISBD view

Plane Answers to Complex Questions [electronic resource] :The Theory of Linear Models / by Ronald Christensen.

by Christensen, Ronald [author.]; SpringerLink (Online service).
Material type: materialTypeLabelBookSeries: Springer Texts in Statistics: Publisher: New York, NY : Springer New York, 2011.Edition: 4.Description: XXII, 494 p. online resource.ISBN: 9781441998163.Subject(s): Statistics | Mathematical statistics | Statistics | Statistical Theory and MethodsDDC classification: 519.5 Online resources: Click here to access online
Contents:
Introduction -- Estimation -- Testing -- One-Way ANOVA -- Multiple Comparison Techniques -- Regression Analysis -- Multifactor Analysis of Variance -- Experimental Design Models -- Analysis of Covariance -- General Gauss-Markov Models -- Split Plot Models -- Mixed Models and Variance Components -- Model Diagnostics -- Variable Selection -- Collinearity and Alternative Estimates.-.
In: Springer eBooksSummary: This textbook provides a wide-ranging introduction to the use and theory of linear models for analyzing data. The author's emphasis is on providing a unified treatment of linear models, including analysis of variance models and regression models, based on projections, orthogonality, and other vector space ideas. Every chapter comes with numerous exercises and examples that make it ideal for a graduate-level course. All of the standard topics are covered in depth: ANOVA, estimation including Bayesian estimation, hypothesis testing, multiple comparisons, regression analysis, and experimental design models. In addition, the book covers topics that are not usually treated at this level, but which are important in their own right: balanced incomplete block designs, testing for lack of fit, testing for independence, models with singular covariance matrices, variance component estimation, best linear and best linear unbiased prediction, collinearity, and variable selection. This new edition includes a more extensive discussion of best prediction and associated ideas of R2, as well as new sections on inner products and perpendicular projections for more general spaces and Milliken and Graybill’s generalization of Tukey’s one degree of freedom for nonadditivity test.
Tags from this library: No tags from this library for this title. Add tag(s)
Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode
MAIN LIBRARY
QA276-280 (Browse shelf) Available

Introduction -- Estimation -- Testing -- One-Way ANOVA -- Multiple Comparison Techniques -- Regression Analysis -- Multifactor Analysis of Variance -- Experimental Design Models -- Analysis of Covariance -- General Gauss-Markov Models -- Split Plot Models -- Mixed Models and Variance Components -- Model Diagnostics -- Variable Selection -- Collinearity and Alternative Estimates.-.

This textbook provides a wide-ranging introduction to the use and theory of linear models for analyzing data. The author's emphasis is on providing a unified treatment of linear models, including analysis of variance models and regression models, based on projections, orthogonality, and other vector space ideas. Every chapter comes with numerous exercises and examples that make it ideal for a graduate-level course. All of the standard topics are covered in depth: ANOVA, estimation including Bayesian estimation, hypothesis testing, multiple comparisons, regression analysis, and experimental design models. In addition, the book covers topics that are not usually treated at this level, but which are important in their own right: balanced incomplete block designs, testing for lack of fit, testing for independence, models with singular covariance matrices, variance component estimation, best linear and best linear unbiased prediction, collinearity, and variable selection. This new edition includes a more extensive discussion of best prediction and associated ideas of R2, as well as new sections on inner products and perpendicular projections for more general spaces and Milliken and Graybill’s generalization of Tukey’s one degree of freedom for nonadditivity test.

There are no comments for this item.

Log in to your account to post a comment.
@ Jomo Kenyatta University Of Agriculture and Technology Library

Powered by Koha